devtools::load_all("~/utils.tool")
## ℹ Loading utils.tool
## Warning in .recacheSubclasses(def@className, def, env): undefined subclass "ggraph" of class
## "gg.obj"; definition not updated
library(ggplot2)
# knitr::opts_chunk$set(echo = F)
x <- seq(1, 10, by = .05)
work2time <- data.frame(Time = x, Work = -x^2 + 100)
p <- ggplot(work2time) +
geom_line(aes(x = Work, y = Time)) +
theme_classic() +
theme(text = element_text(family = "Times"))
p
x <- "this is character"
y <- "this is \"character\""
print(x)
## [1] "this is character"
print(y)
## [1] "this is \"character\""
cat(x, "\n")
## this is character
cat(y, "\n")
## this is "character"
x <- 1
y <- 1:10
z <- seq(1, 10, by = .5)
x
## [1] 1
y
## [1] 1 2 3 4 5 6 7 8 9 10
z
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
data <- data.frame(x = 1:10, y = 10:1, z = rep("character", 10))
data
## x y z
## 1 1 10 character
## 2 2 9 character
## 3 3 8 character
## 4 4 7 character
## 5 5 6 character
## 6 6 5 character
## 7 7 4 character
## 8 8 3 character
## 9 9 2 character
## 10 10 1 character
tibble::as_tibble(data)
## # A tibble: 10 × 3
## x y z
## <int> <int> <chr>
## 1 1 10 character
## 2 2 9 character
## 3 3 8 character
## 4 4 7 character
## 5 5 6 character
## 6 6 5 character
## 7 7 4 character
## 8 8 3 character
## 9 9 2 character
## 10 10 1 character
## a inst data.frame
tibble::as_tibble(mtcars)
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows
lst1 <- list(x = 1, y = 1:3)
lst1
## $x
## [1] 1
##
## $y
## [1] 1 2 3
lst2 <- list(
x = 1:10,
y = rep("character", 20), z = tibble::as_tibble(mtcars)
)
lst2
## $x
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $y
## [1] "character" "character" "character" "character" "character" "character" "character"
## [8] "character" "character" "character" "character" "character" "character" "character"
## [15] "character" "character" "character" "character" "character" "character"
##
## $z
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows
fun <- function(x = 1, y = 2) {
x + y
}
res <- fun()
res
## [1] 3
fun2 <- function(x = seq(0.01, .99, length.out = 100)) {
df <- data.frame(
x = rep(x, 2),
y = c(qlogis(x), 2 * qlogis(x)),
group = rep(c("a","b"),
each = 100)
)
p <- ggplot(df, aes(x=x, y=y, group=group))
# These work
p + geom_line(linetype = 2)
}
p <- fun2()
grep
letters
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w"
## [24] "x" "y" "z"
grep("[a-z]", letters)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
txt <- c("arm","foot","lefroo", "bafoobar")
if(length(i <- grep("foo", txt)))
cat("'foo' appears at least once in\n\t", txt, "\n")
## 'foo' appears at least once in
## arm foot lefroo bafoobar
i
## [1] 2 4
txt[i]
## [1] "foot" "bafoobar"
stringr::str_extract
shopping_list <- c("apples x4", "bag of flour", "bag of sugar", "milk x2")
stringr::str_extract(shopping_list, "\\d")
## [1] "4" NA NA "2"
stringr::str_extract(shopping_list, "[a-z]+")
## [1] "apples" "bag" "bag" "milk"
stringr::str_extract(shopping_list, "[a-z]{1,4}")
## [1] "appl" "bag" "bag" "milk"
stringr::str_extract(shopping_list, "\\b[a-z]{1,4}\\b")
## [1] NA "bag" "bag" "milk"
data <- tibble::tribble(
~ Name, ~ Description, ~ Function,
"base", "data", "data.frame, c, list, ...",
"base", "Expression", "if, else ...",
"base", "String", "paste0, paste, print, cat, ...",
"base", "Match string", "grep, grepl, sub, gsub ...",
"base", "Loop", "for, lapply, apply, mapply ...",
"data.table", "For fast read and write table", "fread, fwrite",
"dplyr", "Modify table", "select, filter, arrange, distinct, slice, mutate ...",
"ggplot2", "Visualization", "...",
"stringr", "Match strings", "str_extract ..."
)
data <- dplyr::relocate(data, Name, Function)
pretty_flex2(data, "Common Packages and Functions",
weight = c(
Description = 1.5, Name = .7))
Name | Function | Description |
---|---|---|
base | data.frame, c, list, ... | data |
base | if, else ... | Expression |
base | paste0, paste, print, cat, ... | String |
base | grep, grepl, sub, gsub ... | Match string |
base | for, lapply, apply, mapply ... | Loop |
data.table | fread, fwrite | For fast read and write table |
dplyr | select, filter, arrange, distinct, slice, mutate ... | Modify table |
ggplot2 | ... | Visualization |
stringr | str_extract ... | Match strings |
library(MCnebula2)
mcn <- mcnebula()
slotNames(mcn)
## [1] "creation_time" "ion_mode" "melody" "mcn_dataset"
## [5] "statistic_set" "project_version" "project_path" "project_conformation"
## [9] "project_metadata" "project_api" "project_dataset" "parent_nebula"
## [13] "child_nebulae" "export_path" "export_name"
mcn@mcn_dataset
## An object of class "mcn_dataset"
## Slot "dataset":
## list()
##
## Slot "reference":
## list()
##
## Slot "backtrack":
## list()
mcn_dataset(mcn)
## An object of class "mcn_dataset"
## Slot "dataset":
## list()
##
## Slot "reference":
## list()
##
## Slot "backtrack":
## list()
mcn <- mcn_5features
mcn1 <- filter_structure(mcn)
mcn1 <- create_reference(mcn1)
mcn1 <- filter_formula(mcn1, by_reference = T)
mcn1 <- create_stardust_classes(mcn1)
mcn1 <- create_features_annotation(mcn1)
mcn1 <- cross_filter_stardust(mcn1, 2, 1)
mcn1 <- create_nebula_index(mcn1)
mcn1 <- compute_spectral_similarity(mcn1)
mcn1 <- create_parent_nebula(mcn1, 0.01)
mcn1 <- create_child_nebulae(mcn1, 0.01)
mcn1 <- create_parent_layout(mcn1)
mcn1 <- create_child_layouts(mcn1)
mcn1 <- activate_nebulae(mcn1)
## optional Child-Nebulae
visualize(mcn1)
visualize(mcn1, "parent")
visualize(mcn1, 1)
visualize_all(mcn1)
mcn <- mcn_5features
mcn1 <- filter_structure(mcn)
## [INFO] MCnebula2: filter_structure
## ## msframe: filter_msframe group_by: ~ .features_id
mcn1 <- create_reference(mcn1)
## [INFO] MCnebula2: create_reference
## ## create_reference: fill == T
## filling missing features with filtered formula
## [INFO] MCnebula2: filter_formula
## ## msframe: filter_msframe group_by: ~ .features_id
mcn1 <- filter_formula(mcn1, by_reference = T)
## [INFO] MCnebula2: filter_formula
## ## filter_formula: by_reference == T
## case formula, ignore `fun_filter`
mcn1 <- create_stardust_classes(mcn1)
## [INFO] MCnebula2: create_stardust_classes
## [INFO] MCnebula2: filter_ppcp
## ## filter_ppcp: by_reference == T
## ## filter_ppcp: validate annotation data .canopus >>> .f3_canopus
## ## msframe: filter_msframe group_by: ~ paste0(.features_id, "_", .candidates_id)
mcn1 <- create_features_annotation(mcn1)
## [INFO] MCnebula2: create_features_annotation
mcn1 <- cross_filter_stardust(mcn1, 2, 1)
## [INFO] MCnebula2: cross_filter_stardust
## ## cross_filter_stardust: quantity
## ## cross_filter_stardust: score
## ## cross_filter_stardust: identical
mcn1 <- create_nebula_index(mcn1)
## [INFO] MCnebula2: create_nebula_index
mcn1 <- compute_spectral_similarity(mcn1)
## [INFO] MCnebula2: compute_spectral_similarity
## ## compute_spectral_similarity: compareSpectra
mcn1 <- create_parent_nebula(mcn1, 0.01)
## [INFO] MCnebula2: create_parent_nebula
mcn1 <- create_child_nebulae(mcn1, 0.01)
## [INFO] MCnebula2: create_child_nebulae
mcn1 <- create_parent_layout(mcn1)
## [INFO] MCnebula2: create_parent_layout
mcn1 <- create_child_layouts(mcn1)
## [INFO] MCnebula2: create_child_layouts
mcn1 <- activate_nebulae(mcn1)
## [INFO] MCnebula2: activate_nebulae
## optional Child-Nebulae
visualize(mcn1)
## [INFO] MCnebula2: visualize
## Specify item as following to visualize:
## # A tibble: 18 × 3
## seq hierarchy class.name
## <int> <dbl> <chr>
## 1 1 5 Amino acids and derivatives
## 2 2 4 Amino acids, peptides, and analogues
## 3 3 2 Benzenoids
## 4 4 4 Carbonyl compounds
## 5 5 5 Carboxylic acid amides
## 6 6 4 Carboxylic acid derivatives
## 7 7 3 Carboxylic acids and derivatives
## 8 8 3 Heteroaromatic compounds
## 9 9 4 Indoles
## 10 10 5 Ketones
## 11 11 3 Lactams
## 12 12 3 Macrolactams
## 13 13 2 Organic acids and derivatives
## 14 14 3 Organic oxides
## 15 15 5 Peptides
## 16 16 2 Phenylpropanoids and polyketides
## 17 17 3 Pyrroles
## 18 18 4 Substituted pyrroles
visualize(mcn1, "parent")
## [INFO] MCnebula2: visualize
visualize(mcn1, 1)
## [INFO] MCnebula2: visualize
visualize_all(mcn1)
## [INFO] MCnebula2: visualize_all
## ## BEGIN: current.viewport:
## viewport[ROOT]
## ## info: current.viewport:
## viewport[GRID.VP.3436]
## ## info: current.viewport:
## viewport[legend_hierarchy]
## ## info: current.viewport:
## viewport[sub_panel]
## ## info: current.viewport:
## viewport[ROOT]
## ## visualize: legend:
## extract legend from `ggset(child_nebulae(x))[[1]]` (nebula names:).
## In default, legend scales have been unified for all child-nebulae.
## ## END: current.viewport:
## viewport[GRID.VP.3437]